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Abstract—~The large deflections of rigid-plastic circular plates are analyzed by making use of the generalized
yield line method which takes into account the changes in geometry of the structures. The circular plates
are assumed to deform into a number of right circular cones separated by concentric hinge circles with no
radial strains in each cone. Then, the general equation to obtain the load-deflection relations is derived from
the principle of virtual velocity.

Simply supported circular plates under circular Joading are investigated, the boundary of which is cither
restrained against inward movement or free to move inward. The resnlts are compared with those obtained
by other researchers. The method to account for the elastic deformations is discussed.

NOTATION

radius of circular plate
functions of »
radius of circular loading
bla
(ElooXtia)*
Young's modulus
integral defined by eqn (6)
rise of shallow conical shell
number of hinge circles
radial and circumferential bending moments
M Ms, Mol My
maximum plastic bending moment = {1/4)oat’
radial and circumferential membrane forces
NyINo, NolNe
maximum plastic membrane force = gyt
distributed pressure
uniformly distributed pressure
total load
PIPy
s collapse load
2 cylindrical coordinates as shown in Fig. 1
5 a
41 %2, 72 dimensionless radial distances defined by eqns (38), {52) and (53), respectively
t plate thickness
radial displacement
coefficient in expression of radial displacement
deflection
deflection at center of circular plate
wolt
inward displacement at boundary of circular plate
&(2), ¢(2) radial and circumferential strains at altitude z
¢y0, €0 Tadial and circumferential membrane strains
Xy, ks radial and circumferential curvatures
v Poisson’s ratio
oo Yyield stress
(") derivative with respect to time
] jump in preceding quantity
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1. INTRODUCTION
The behavior of structures may be analyzed reasonably well by rigid-plastic large deflection
analysis, in which geometry changes are tasken into account while elastic deformations are
neglected.
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The large deflections of rigid-plastic circular plates under circular loading were investigated
by Onat and Haythornthwaite{1}. The deformations at large deflection were assumed to be of
the same shape as the incipient velocity at collapse. The boundary of a simply supported plate
was free to move inward while that of a rotationally fixed plate was restrained against inward
movement. By the upper bound theorem of limit analysis which does not retain large deflection,
the collapse load at every stage of deformations was obtained. The analysis was based on the
exact yield surface for a uniform plate subjected to the Tresca yield condition.

Hodge[2] used the yield surface for sandwich plate and the upper bound theorem of Onat
and Haythornthwaite{1] to analyze a simply supported plate, the boundary of which was free to
move inward,

Onat[3] obtained the collapse load of shallow conical shells, from which he derived the
load-deflection curves for a simply supported circular plate. The boundary was assumed to be
free to move inward. The results were considerably different from those obtained by Onat and
Haythornthwaite{1] and Hodge[2].

Rzhanitsyn[4] applied the ganeralized yield line method to rigid-plastic polygonel plates
subjected to a concentrated load. It was assumed that the plate deformed into 2 pyramid with a
vertex at the point of the applied load and yield hinges developed along the lateral edges with
the rest of the plate remaining rigid. The load-deflection relations were obtained by the principle
of stationary potential energy associated with the deformation theory of plasticity and the von
Mises yield condition. A simply supported circular plate, the boundary of which was either
restrained against inward movement or free to move inward, was analyzed as the limiting case
of a polygonal plate.

Sawczuk [5-7] applied the generalized yield line method to analyze a simply supported plate,
its edge being either restrained against inward movement or free to move inward. By using the
principle of virtual velocity, the general equations to get the load-deflection relations were
derived in polar coordinates. The analysis was based on either the flow theory or the
deformation theory of plasticity.

Duszek (8] obtained the approximate solution for a simply supported plate under uniform
load with the boundary restrained against inward movement. The material was assumed to obey
the Tresca yield condition.

Jones[9] obtained the exact solution for a simply supported plate based on the two-moment
limited interaction surface{10}.

In this paper, large deflection behavior of circular plates under circular loading is in-
vestigated using the generalized yield line method which was developed by Rzhanitsyn([4] and
Sawczuk [S-7]. At first, the general equation to obtain the load-deflection relations is derived in
polar coordinates by making use of the principle of virtual velocity. The procedure to derive the
general equation is different from that by Sawczuk[7] although the obtained equation is the
same. Then, they are applied to simply supported circular plates. The boundary is assumed to
be either restrained against inward movement or free to move inward. Finally the resuits are
compared with relations obtained by other researchers. And the method to account for the
elastic deformation of circular plates is discussed.

2. GOVERNING EQUATIONS
We analyze axisymmetric deformations of circular plates under axisymmetric loading. We
use polar coordinates y and @ which lie in the midplane of a circular plate of radius a and
thickness t. If the displacement components of a point in the midplane are u and w,
respectively, along v and transverse to the plate as shown in Fig. 1, then the strain displacement
relations are given by

&(2)=€p0t+2K, €(2)= €+ 2Ky (N

P

f.u
,./

z,.w
Fig. 1. Coordinate system and displacement components for circular plate.
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where
cw=irti(gy). )
Ky = - %%;—, Ky = —-fg;. 2a~d)
The principle of virtual work
_L ’ (NS, + Nobego + M Sk, + Mybxy 2wy dy = L ‘ (pw)2my dy 0

gives the following equilibrium equations:

d
&y (YNy) =N, =0 4
d dw
1 {2 M- Mo+ o, S5+ =0, ©
Now, we consider the integral
P[5 (g oM - Mo+ 9, 52 }+w]wd‘y 0)
o Ld Y ’ T dy

which, by means of integrating by parts, becomes
4 4 dw dw
F=L Py d7+L {7(My+wN?)-é?+(M,+wN.)-§;} dy ¢}
d dwl ., dw
+ {g {'YB{?) ~ M, + ’2’*\:? '&';}w L*# (M, + WN’?) -&?L*c

If the plate is assumed to deform into a number of right circular cones separated by k
concentric hinge circles with no radial strains in each cone, eqn (7) becomes

F= f pYW d'y»%",f,l 'y(M.,+wN,) ] I (M.+WN.)
+ {3 M) -My 9N, S| —y(M,+wN,)-&-$ N ®

where ] denotes a jump in the preceding quantity.
The Tresca yield condition provides, in each cone

G- .

and at each hinge circle

(' B

where

No=uwmt, Mp= -§ oot {1
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Therefore, the flow rule gives

én_t (N
Ks| 2 (No) (12)
in each cone and

o _t (&)

f’evt 2 Ng (}3}

at each hinge circle, respectively.

3. SIMPLY SUPPORTED CIRCULAR PLATES UNDER CIRCULAR LOADING

We consider a simply supported circular plate subjected to a uniformly distributed circular
loading § of radius b as shown in Fig. 2. The boundary conditions are at y =a

w=0, M,=0, u=-A {14a-c)
From eqns {5) and (14b), we have
F+yM, i“’ =0. (15)
ywg

If we consider a deformation which satisfies eqn (14a), then substitution of eqn (8) into eqn (15)
results in

[ oo av=-Z 20, 1w ] - [* 0+ om0 §E (16

Now, we assume that the plate deforms into a cone with an apex at the center. Then, the
deflection is represented by

w=wi(1-2) an

which satisfies eqn (14a). Since the radial strain is zero in the cone, eqn (2a) gives

du 1 fdw\ _
&= *’i(’&';) =0 (18)
which has the solution
2
=My _Y\_
u=3e (1 a) A (19)
)

Fig. 2. Simply supported circular plate subjected to uniformly distributed circular loading.
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Substitution of eqns (17) and (19) into eqns (2) gives

2

2ay a/ v
k, =0, x.=la"-3. (20)
Therefore, we have
o f1-2)_ 98
- B’a(i a) o g @
On the other hand, eqn (12) gives
én_t (No
=3 (x) @)

It follows from eqns (21) and (22) that

el ()2}

Substitution of eqn (23) into eqn (4), followed by integration, gives
-tef(-2)-2)
In the following, we consider two types of in-plane boundary conditions.
hav(:) The case where the boundary is restrained against inward movement. In this case, we
A=0. 25
Substitution of this equation into eqns (23) and (24) yields
Ny =201~ ) 26)
N, =2wy(1-/2) v}
where
Ny =NJN,, N,=N,JNo
wo=wolt, ¥=1/a. 28
Equations (26) and (27) remain valid provided
~-1€N,<1, ~1<N, <1 29
which imply
wos 1/2, (30)

Substitution of eqn (26) into eqn (9) gives

M, = 1-4we(1 - 5 31
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where

Mo = M./Mo (32)

The stress distributions given by eqns (26), (27) and (31) are depicted in Fig. 3.
Substitution of eqns (17), (26) and (31) into eqn (16) results in

P=1+(4/3)%} when wo=1/2 (33)
where
P=P/P, (34)
in which P and P, are the total load and the collapse load, respectively, given by
P = ab*p, Po=2aMol{l - (2/3)bla)}. (35)
When #y 3 1/2, we have
No=1, My=0, N,=0 for0s¥=<y, (36)
and
No=2w(1-9), My =1-4w(1~ )
Ny =2wo{1 - 92— 3219} for ;s y<1 @7
where
F1=1=1/(2%). (38)

These stress distributions are also shown in Fig. 3. Substitution of eqns (17), (36) and (37) into
eqn (16) leads to

P =2w,+1/(6w) when wo> 1/2. (39)
R Ry
1 1
0 ' ’ 0 T 1 '
My My
1 / 1
i
0 1 0 | 4 1
R N,
1 ]
24 14
0 1 ] T H

(i) (i)
Fig. 3. Stress distribution for simply supported circular plate with boundary restrained against inward
movement; (i) when W, < 1/2 and (i) when Wy > 1/2.



Large deformations of rigid-plastic circular plates

1049

(b) The case where the boundary is free to move inward. In this case, the following equation

must be satisfied.
Nylyea =0.

Substitution of eqn (24) into eqn (40) gives

which has the solution

Substitution of eqn (41) into eqns (23) and (24) yields

No=2%(1/2—- %)

N, =2wy(1/2- 7/2).
These equations remain valid provided

-1<N,<1, -1<N, <1
which imply
W= 1.

Substitution of eqn (43) into eqn (9) gives

M,y = 1-4wgX(1/2- §).

(40)

(41)

42)

43)

(44)

(45)

(46)

()

The stress distributions given by eqns (43), (44) and (47) are depicted in Fig. 4. Substitution of

eqns (17), (43) and (47) into eqn (16) results in
P =1+(13)w* when wo<1.
When W, = 1, the stresses are expressed as
Ny=1, My=0, N,=1 for0sy<4,

Ny =2%(1/2-7), My =1-4w(1/2-5)
Ny=we(-75-5+1) for . <5<7,

and
Ny=-1, M,=0, ﬁ1=1"9"l for ;€y<1
where
F2= 112~ 1/(2W%q)
and

s = 12+ 1/2W%,).

48)

49)

(50)

Gn

(52)

(53)
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Fig. 4. Stress distribution for simply supported circular plate with boundary free to move inward; (i) when
Wwo < | and (i) when w2 1.

These stress distributions are also depicted in Fig. 4. Substitution of eqns (17), (49), (50) and
(51) into eqn (16) provides

P =wy+1/3%,) when Wo= 1. (54)

4. RESULTS AND DISCUSSIONS
The load-defiection relations given by eqns (33), (39), (48) and (54) are shown in Fig. 5. It is
seen that if the deflections become large, the curves for two types of the in-plane boundary
conditions are reduced asymptotically to the straight lines represented, respectively, by

P =2Wo (55)
and
I.’ = Wo (56)
8
L2
Rat
61
5t (a
P d (b ///
-~
3 //
2 F // ///
Bt
! 7 -
///
0 0 1 2 3 5 4

t

Fig. 5. Load-deflection relations for simply supported circular plate with boundary either (a) restrained
against inward movement or (b) free to move inward.
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which are indicated by broken lines. It implies that the load of the plate with boundary
restrained against inward movement is approximately twice as large as the load of plate with
boundary free to move inward for the same amount of deflection. The in-plane boundary
conditions have important influence on the behavior after the collapse throughout the entire
range of deformations.

The lower parts of both curves, which are represented by eqns (33) and (48), respectively,
are the same as those derived by Onat[3] and Sawczuk[7].

However, the curve obtained by Onat and Haythornthwaite[1] for a plate with boundary
free to move inward is exactly the same as that given by eqns (33) and (39), which, in the
present analysis, are for a plate with boundary restrained against inward movement. Onat and
Haythornthwaite[1] assumed that the deformations were given by

u=—(1/2)(wi'la)y, w=wo(l-7H). 57

If we assume that, instead of eqn (57), the deformations are represented by
u==(1/4)wo’la)y, w=wl—7) (58)
and follow the method developed by Onat and Haythornthwaite[1], then we have the relations

P=1+(1/2)%w;+(1/6)%," when0< W, = 1} (59)
P =1/2+ o+ 1)(6W0) when 1< W,
which are depicted in Fig. 6. It is seen that the derived curve is considerably different from the
original one and close to the result obtained in the present paper. Thus the deformations
represented by eqn (58) seem to be more appropriate than those given by eqn (57).

The same comments can be mentioned for Hodge’s analysis[2] which is almost the same as
Onat and Haythornthwaite analysis[I] except for the yield condition. Hodge applied the

assumed deformation given eqn (57) to a plate with boundary free to move inward, obtaining
the result

P=1 whenO0<w,<1/4 }

* P =2+ 1/(8W%;) when 1/4< W, (60)

which is almost the same as that of Onat and Haythornthwaite[1]. If we use the assumed

ool

Fig. 6. Comparison of load-deflection relations with those of other researchers for simply supported
circular plate with boundary either (a) restrained against inward movement or (b) free to move inward.
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deformations given by eqn (58) and follow Hodge's analysis, we have

P=1+(1/2)w, when0<wo<1/2
P =1/2+ wo+1/(8W) when 112 wo} @1
which is close to the relation given by eqn (59).

Thus the results similar to those obtained in this paper can be derived by using the methods
of Onat and Haythornthwaite[1] and Hodge[2].

For a plate with boundary restrained against inward movement, if we assume that the
deformations are represented as

u=0, w=wll-%) (62)

and follow Onat and Haythornthwaite's method[1], then we have the following load deflection
relations;

_13 =1+ Wo+(2/3)%;> when 0<wo<1/2 )
P=12+2w,+1/(12%y) when 12<w, |°

And if we follow Hodge's method[2], then we have

B =1/2+ 20+ 1/(16%,) when 1/4< W, (64)

P=1+w, when0<w,<1/4 }
Above results are similar to those obtained in the present paper.
Therefore it seems that the results derived for two types of the in-plane boundary conditions
in this paper are reasonable.
Rzhanitsyn[4) and Sawczuk[$, 6] analyzed the large deformations of rigid-plastic simply
supported plates based on the deformation theory of plasticity and the Tresca yield condition
with the results

2

P=1+%’ when0<wo<1 (65)
P =2W, when 1<%,
for a plate with boundary restrained against inward movement, and
P =1+(1/4)w, when 0<W,<2 (66)
P=w, when2<w,

for a plate with boundary free to move inward. The deformations were assumed to be the same
as those taken in the present paper for two types of the in-plane boundary conditions,
respectively. The load-deflection relations are plotted in Fig. 6. It is seen that the curves are
slightly below the corresponding curves based on the flow theory of plasticity.

From the results which have been derived so far, the load-deflection relations for simply
supported shallow conical shells with the rise of H as shown in Fig. 7 can be derived. Since a
plate has been assumed to deform into a cone, the curve of the relation between the load P/P,
and the deflection wo/t for a conical shell is obtained by shifting to the wy/t direction by an
amount equal to H/t as depicted in Fig. 8, When the loads are small, the results are ailmost the
same as those obtained by Onat[3]. It should be noted that the initial slope is not zero.

In the rigid-plastic analyses which have been discussed hitherto, the elastic deformation is
disregarded. Now, by assuming that a plate is made of elastic material, we consider the
potential energy at large deflections as

Et a
T= f('l__v!jj; (€§o+ 21’6706304‘ E%o)zir‘y d'y

Et3 ] b
+m L (x,2+ 2wy + kD)2my dy — .,f;, {pw)2mydy ()
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Fig. 7. Simply supported shallow circular conical shell subjected to uniformly distributed circular loading.

o'U[V

Fig. 8. Load-deflection relations for simply supported shallow circular conical shells with boundary cither
(a) restrained against inward movement or (b) free to move inward.

where E and v are Young's modulus and Poisson’s ratio, respectively. If we take the assumed
deformation field for a plate with boundary restrained against inward movement as

u=uly’-7) )
w= wo(%:—vl; '7‘-&(53—:7”) 7+ l)
and for a plate with boundary free to move inward as
"= “°(‘72—f: ; 7)—(1 + v?(25+ u)“!caﬁ';2
(69)

LSRR 5 P
w—wo(5+v7 S5+v ¥+l

then, the energy method gives the following results for a plate with boundary restrained against
inward movement

1-23)b

P = « Ae(Wo + By’

P T30+ b rasnp: AcPet B (70)
and for a plate with boundary free to move inward as

P= L= QI3 - Ae(Wo + OO, an

3(5+v)-33+v)b*+ (1 + v)b*
88 Val. 17, No. 11—=C
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In the above equations, A, B and C are the functions of », and

e=£(1), =2

ol b 72)
The results for 5 = 1.0 and v = 0.3 are shown in Fig. 9 together with the rigid-plastic solution.
The real behavior of a circular plate may be well approximated by the elastic curve when the
deformation is small, and by the rigid-plastic curve when the deflection is large. However, in the
case where e is large, the rigid-plastic analysis gives good approximation throughout the entire
range of deflections.

To account for the elastic deformation, Onat and Haythornthwaite[1] proposed the method
in which the deflection obtained by the elastic small deflection analysis was added to that
obtained by the rigid-plastic large deflection analysis. They showed remarkable agreement
between the predicted result and experiment for a simply supported circular plate with
boundary free to move inward. The crosses in Fig. 10 show experimental results with elastic
linear deflections subtracted, and they agree quite well with the theoretical curve by Onat and
Haythornthwaite[1]. However, the agreement does not verify the proposed procedure since
their rigid-plastic curve is not considered appropriate as discussed beforehand. As shown in
Fig. 10, the proposed curves in this paper show good agreement with the measured test results.

oolv

Elastic
4T reno
["5-0

55

(o)
Rigid-Pigstic

1 L SR
ez5.0 }Elcsm
*10.0.
° i A
0 1 Fi 3

% 4
1

Fig. 9. Elastic solution of load-deflection relations together with rigid-plastic solution for simply supported
circular plate with boundary either (a) restrained against inward movement or (b) free to move inward.
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Fig. 10. Experimental and theoretical load-defiection relations for simply supported circular plate with

boundary free to move inward.
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5. CONCLUSIONS

The generalized yield line method has been formulated in cylindrical coordinates to analyze
large deformations of rigid-plastic circular plates under axisymmetric lateral pressure. The
procedure to derive the general equation to get the load-deflection relations is different from
that by Sawczuk[7] although the obtained equation is the same. Then, it has been applied for
simply supported circular plates under circular loading. The boundary has been assumed to be
either restrained against inward movement or free to move inward. The obtained load-deflection
relations are quite different from those of Onat and Haythornthwaite[1] and Hodge[2]. It has
been shown that, if we take appropriate deformations, the methods of Onat and
Haythornthwaite[1] and Hodge[2] give almost the same results as those of the present paper.
Finally the method to take into account the elastic deformations has been proposed which is
different from the procedure suggested by Onat and Haythornthwaite[1]. The proposed
load-deflection relation has shown good agreement with test results.
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