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AIlItrId-The Iarae dellections of riaid-plastic circular plates are analyzed by makiDa use of the aeneralized
yield line method which takes into ac:c:ount the chanaes in aeometry of the structures. The circular plates
are assumed to deform into a number of riattt circular cones separated by concentric hinF circles with no
radial strains in each cone. Then, the Plleral equation to obtain the load-deflection relations is derived from
the principle of virtual velocity.

Simply supported circular plates under circ:ular loading are investipted. the boundary of whicll is either
restrained apinst inward movement or free to move inward. The results are compared with those obtained
by other researchers. The method to account for the elastic deformitlons is discllSsed.

NOTATION
a radius of circular plate

A, S, C functions of "
b radius of circular loading
b bla
t (E!t1o)(llai
E YOUIII'S modulus
F intesraJ defined byeqn (6)
H rise of shaDow conical shell

Ie number of _ circ:lcs
Ai.,. Af. radial and circ:umfcrcntial bending moments
Ai.,. Ai. M,/Mo. MJM.

Mo maximum plastic bendilll moment .. (1/4)0'01'
N.,. N. radial and circumferential membrane forces
ii.,. ii. N,/No. NJNo

No muimum plastic membrane force .. crol
p distributed pressure
p uniformly distributed pressure
P totalload
, PIPo

Po c:oIlapse load
,., Il, % cylindrical coordinates as shown in Fig. I

j "fIa
110 ft, 13 dimensionless radial distances defined by eqns (38), (S2) and (S3), respectively

t plate thickness
II radial displacement

110 coeIicient in expression of radial displacement
w delection

WI> deftection at center of circular plate
lt10 Wolf
A inward displacement at bouoclary of circular plate

f,(l), f.(Z) radial and circumferential strains at altitude Z
',0, '10 radial and circumferential membrane strains

Ie.,. Ie, radial and circumferential curvatures
" Poisson's ratio

cro yiekl stress
n derivative with respect to time

] jump in precedilll quantity

J. INTRODUCTION
Tbe behavior of structures may be analyzed reasonably well by rigid-plastic large deflection
analysis, in which geometry changes are taken into account while elastic deformations are
neglected.
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The large deflections of rigid-plastic circular plates under circular loading were investigated
by Onat and Haythornthwaite[l]. The deformations at large deflection were assumed to be of
the same shape as the incipient velocity at coUapse. The boundary of a simply supported plate
was free to move inward while that of a rotationally fixed plate was restrained against inward
movement. By the upper bound theorem of limit analysis which does not retain large deflection,
the collapse load at every stage of deformations was obtained. The analysis was based on the
exact yield surface for a uniform plate subjected to the Tresca yield condition.

Hodge [2] used the yield surface for sandwich plate and the upper bound theorem of Onat
and Haythornthwaite[l] to analyze a simply supported plate, the boundary of which was free to
move inward.

Onat[3] obtained the collapse load of shallow conical shells, from which he derived the
load-deflection curves for a simply supported circular plate. The boundary was assumed to be
free to move inward. The results were considerably different from those obtained by OO8t and
Haythornthwaite[l] and Hodge[2].

Rzhanitsyn[4] applied the ganeralized yield line method to rigid-plastic polygonel plates
subjected to a concentrated load. It was assumed that the plate deformed into a pyramid with a
vertex at the point of the applied load and yield hinges developed along the lateral edges with
the rest of the plate remaining rigid. The load-deflection relations were obtained by the principle
of stationary potential energy associated with the deformation theory of plasticity and the von
Mises yield condition. A simply supported circular plate, the boundarY of which was either
restrained against inward movement or free to move inward, was analyzed as the limiting case
of a polygonal plate.

Sawczuk[5-7] applied the generalized yield line method to analyze a simply supported plate,
its edge being either restrained against inward movement or free to move inward. By using the
principle of virtual velocity, the general equations to get the load-deflection relations were
derived in polar coordinates. The analysis was based on either the flow theory or the
deformation theory of plasticity.

Duszek[8] obtained the approximate solution for a simply supported plate under uniform
load with the boundary restrained against inward movement. The material was assumed to obey
the Tresca yield condition.

Jones [9] obtained the exact solution for a simply supported plate based on the two-moment
limited interaction surface[lO].

In this paper, large deflection behavior of circular plates under circular loading is in
vestigated using the generalized yield line method which was developed by Rzhanitsyn[4] and
Sawczuk[S-7]. At first, the general equation to obtain the load-deftection relations is derived in
polar coordinates by making use of the principle of virtual velocity. The procedure to derive the
general equation is different from that by Sawczuk[7] although the obtained equation is the
same. Then, they are applied to simply supported circular plates. The boundary is assumed to
be either restrained against inward movement or free to move inward. Finally the results are
compared with relations obtained by other researchers. And the method to account for the
elastic deformation of circular plates is discussed.

2. GOVERNING EQUATIONS
We analyze axisymmetric deformations of circular plates under axisymmetric loading. We

use polar coordinates 'Y and 8 which lie in the midplane of a circular plate of radius a and
thickness t. If the displacement components of a point in the midplane are u and w,
respectively, along 'Y and transverse to the plate as shown in Fig. 1, then the strain displacement
relations are given by

(1)

-+---~~......,--t-r. u

I.W

Fia. I. Coordinate system and displacement components for circular plate.



where
Larp deformatiolls of tiaid·plastit tircular plates IOU

(2a-d)

The principle of virtual work

L4 (N,&~+N.ae.o+M.,8#ry+M,8K.}2'1l"Yd'1= L4 (pw)21l")'d-y (3)

pves the following equilibrium equations:

d
d1 (yNy)- N. =0

Now. we consider the integral

which. by means of integrating by parts, becomes

L
4 {ill { dtw dW}F= 0 p')iWdy+ Jo y(My+wNy) d11+(M.+wN.}dY' d-y

{ d. dW} 'I dWI+ -d (yM'I)-M.+yNY -d w -1(M.,+wNY)-d •
'1 Y 1-4 1 "''''4

(4)

(S)

(6)

(7)

If the plate is assumed to deform into a number of right circular cones separated by Ie
concentric hinge circles with no radial strains in each cone, eqn (7) becomes

141 k dW] fa dw
F = 0 P'YW dy +~ 1(My+ wNy) d1 1+ Jo (M. +wN.) d;' dy

{ d dW} -, dw I+ -d (yMy ) - M, +1N., -d W - 'Y(My +wNY)-d
1 1 "-4 1 ''''4

where] denotes a jump in the preceding quantity,
The Tresca yield condition provides. in each cone

and at each hinge circle

where

(8)

(9)

(to)

(11)
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Therefore, the flow rule gives

in each cone and

KVOliEI KONDO and THEODORE H. H. PIAN

(12)

(3)

at each hinge circle, respectively.

3. SIMPLY SUPPORTED CIRCULAR PLATES UNDER CIRCULAR LOADING

We consider a simply supported circular plate subjected to a uniformly distributed circular
loading p of radius b as shown in Fig. 2. The boundary conditions are at y =a

From eqns (5) and (l4b), we have

w=0, My = 0, It = -A.

dw IF+yMY -
d

=0.
y y."

(14a-c)

(15)

If we consider a deformation which satisfies eqn (14a), then substitution of eqn (8) into eqn (15)
results in

1" k dW] L" dwpyw dy =- ~ y(My +wNY)-d .- (M, + wN')-d dy.
o ,·1 Y lOY

(16)

Now, we assume that the plate deforms into a cone with an apex at the center. Then, the
deflection is represented by

w= wo(l-;)

which satisfies eqn (14a). Since the radial strain is zero in the cone, eqn (2a) gives

which bas the solution

It =wo2 (I_I)-A.
2a a

Fig. 2. Simply supported circular plate subjected to uniformly distn'buted circular loading.

(17)

(18)

(19)
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Substitution of eqns (17) and (19) into eqns (2) gives

e..... =O Eta= wo
2
(I_I)_~

'v, 2a1 a 1
WoIC,=O, IC.=-.
G1

Therefore, we have

flO (1 I) d~-:-=Wo - -a-.
IC. a dwo

On the other band, eqn (12) gives

~IO=! (N.).
IC. 2 No

It fonows from eqns (21) and (22) that

N'=2{WO(I_ I )_! d~}.
No tat dwo

Substitution of eqn (23) into eqn (4), fonowed by intqration. gives

!iJ.=2a two (1-~) _ d~ }.
No t t 2a dwo
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(20)

(21)

(22)

(23)

(24)

In the following, we consider two types of in-plane boundary conditions.
(a) The case where the boundary is restrained against inward movemmt. In this case, we

have

~=o.

Substitution of this equation into eqns (23) and (24) yields

N. = 2wo(t - 1)

N., = 2wo(1- '9/2)

where

N. = NJNo. N., = N.,INo

Wo =wolt, 1=1/a.

Equations (26) and (27) remain valid provided

which imply

Woe 1/2.

Substitution of eqn (26) into eqn (9) gives

M. == 1-4wo(l-1)2

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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where
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M.=M,/Mo. (32)

The stress distributions liven by eqns (26), (27) and (31) are depicted in Fig. 3.
Substitution of eqns (17), (26) and (31) into eqn (16) results in

P=1+ (4/3)wo2 when Wo:lii 1/2

where

P=P/Po

in which P and Po are the total load and the collapse load, respectively, given by

When wo" 1/2, we have

and

N. = 2wo(1- j), M. = 1-4wo'1- j)2

Ny = 2wo{1- j/2 - j I2/(2j)} for j11lii j IIii 1

where

jl =1-1/(2wo).

(33)

(34)

(3S)

(36)

(37)

(38)

These stress distributions are also shown in Fig. 3. Substitution of eqns (17), (36) and (37) into
eqn (16) leads to

P= 2wo+ 1/(6wo) when wo.. 1/2.

't;l. 'b.
o I 0 l I

'b. ltzl.
o 1 0 l 1

lB, 'b,
o 1 0 { I

(i) (i)

Fia. 3. Stress distribution for simply supported circular plate with boundary restrained against inward
movement; (i) when i.C 1/2 and (ii) when W. ill 1/2.

(39)
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(b) The case where the boundary is free to move inward. In this case, the following equation
must be satisfied.

(40)

Substitution of eqn (24) into eqn (40) gives

(41)

which has the solution

Substitution of eqn (41) into eqns (23) and (24) yields

N. =2wrJ.l/2- 'Y)

Ny =2wrJ. l/2 - 'Y/2).

These equations remain valid provided

-1" N... I, -1 .. Ny" 1

which imply

Substitution of eqn (43) into eqn (9) gives

M. = 1-4w02(l/2 - 'Y)2.

(42)

(43)

(44)

(45)

(46)

(47)

The stress distnbutions given by eqns (43), (44) and (47) are depicted in Fig. 4. Substitution of
eqns (17), (43) and (47) into eqn (16) results in

p = 1+(1/3)w02 when wo" 1.

When Wo ;;'1, the stresses are expressed as

N. = I, M. =0, Ny = 1 for 0.. 'Y" 'Y2

N. =2wrJ.l/2 - 'Y), M. =1-4w02(1/2 - 'Yt

Ny =wa( - 'Y22/'Y - 'Y +1) for 'Y2" 'Y .. 'Y3

and

where

'Y2 =1/2 -l!(2wo)

and

'Y3· 1/2 + 1/(2wo).

(48)

(49)

(SO)

(51)

(52)

(53)



1 7

-\'--_.........

Ol--~---t ..

KYOHEJ KONDO and THEODORE H. H. PIAN

R,
11------,

-\ '------'

1050

Ii) (ii)

Fig. 4. Stress distribution for simply supported circular plate with boundary free to move inward; 0) when
wo'" I and (01 when Wo;' 1.

These stress distributions are also depicted in Fig. 4. Substitution of eqns (17), (49), (SO) and
(51) into eqn (16) provides

p = wo+ 1/(3wo) when wo~ 1. (54)

4. RESULTS AND DISCUSSIONS

The load-deftection relations given by eqns (33), (39), (48) and (54) are shown in Fig. S. It is
seen that if the deftections become large, the curves for two types of the in-plane boundary
conditions are reduced asymptotically to the straight lines represented, respectively, by

P =2wo (55)

and

P=wo (56)

8
.e.
'l. 7

6

5

4

3

2

o olof:::.------''--.........--l.2---........3-----I

::r- 4

Fig. 5. Load-deftection relations for smply supported circular plate with boundary either (a) restrained
apinst inward movement or (b) free to move inward.
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which are indicated by broken lines. It implies that the load of the plate with boundary
restrained against inward movement is approximately twice as large as the load of plate with
boundary free to move inward for the same amount of deflection. The in-plane boundary
conditions have important influence on the behavior after the coUapse· throughout the entire
range of deformations.

The lower parts of both curves. which are represented by eqns (33) and (48), respectively,
are the same as those derived by Onat[3] andSawczuk[7].

However, the curve obtained by Onat and Haythomthwaite[l] for a plate with boundary
free to move inward is exactly the same as that given by eqns (33) and (39). which. in the
present analysis. are for a plate with boundary restrained against inward movement. Onat and
Haythomthwaite[l] assumed that the deformations were given by

(S1)

If we assume that, instead of eqn (S7), the deformations are represented by

u =-(1/4)(w02/a)'Y. w=wo(1- 'Y) (S8)

and fonow the method developed by Onat and Haythomthwaite[1]. then we have the relations

is = 1+(1/2)wo + (1/6)w02 when O:lii wo:lii I}
is =1/2+Wo + 1/(6wo} when 1:Iii Wo

(S9)

which are depicted in Fig. 6. It is seen that the derived curve is considerably different· from the
original one and close to the result obtained in the present paper. Thus the deformations
represented by eqn (58) seem to be more appropriate than those given by eqn (S7).

The same comments can be mentioned for Hodge's analysis [2] which is almost the same as
Onat and Haythomthwaite analysis[l] except for the yield condition. Hodge applied the
assumed deformation given eqn (S1) to a plate with boundary free to move inward. obtaining
the result

is = 1 when O:lii wo:lii 1/4 }
I is = 2wo+ 1/(8wo} when 1/4:1ii Wo

(60)

which is almost the same as that of Onat and Haythomthwaite[l]. If we use the assumed

5432

2

0
0

3

" ,..--------------...,.....,..---...,
i

7

4

5

6

Fis. 6. Comparison of load-deftection relations with those of other researchers for simply supported
circular plale with boundary either (a) restrained lIPinst inward movement or (b) free to move inward.
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deformations given by eqn (58) and follow Hodge's analysis, we have

P=1+(l/2)wo when 0 a;;; Wo a;;; 1/2 }
P =1/2 + Wo + 1/(8wo) when 1/2 =E; Wo (61)

which is close to the relation given by eqn (59).
Thus the results similar to those obtained in this paper can be derived by using the methods

of Onat and Haythornthwaite[l] and Hodge[2].
For a plate with boundary restrained against inward movement, if we assume that the

deformations are represented as

u =0, w=wo(l- i') (62)

and follow Onat and Haythornthwaite's method[1}, then we have the following load deftection
relations;

P =1+ Wo +(2/3)wo2 when 0 a;;; Wo a;;; 1/2 }
P=l/2+2wo+ l/02wo) when tl2a;;; Wo .

And if we follow Hodge's method[2], then we have

P=1+ Wo when oa;;; woa;;; 1/4 }
P= 1/2 +2wo + 1/06wo) when 1/4 a;;; Wo •

(63)

(64)

Above results are similar to those obtained in the present paper.
Therefore it seems that the results derived for two types of the in-plane boundary conditions

in this paper are reasonable.
Rzhanitsyn[4] and Sawczuk[5, 6] analyzed the large deformations of ripd-plastic simply

supported plates based on the deformation theory of plasticity and the Tresca yield condition
with the results

~ =1~ wo2 when 0 a;;; ~o" 1}
P = 2wo when 1a;;; Wo

for a plate with boundary restrained against inward movement, and

~ = 1.+ O/4)wo when 0a;;; ~o a;;; 2}
P =Wo when 2a;;; Wo

(65)

(66)

(67)

for a plate with boundary free to move inward. The deformations were assumed to be the same
as those taken in the present paper for two types of the in-plane boUndary conditions,
respectively. The load-deftection relations are plotted in Fig. 6. It is seen that the curves are
slightly below the corresponding curves based on the ftow theory of plasticity.

From the results which have been derived so far, the load-deftection relations for simply
supported shallow conical shells with the rise of H as shown in Fig. 7 can be derived. Since a
plate has been assumed to deform into a cone, the curve of the relation between the load PIPo
and the deflection wolt for a conical shell is obtained by shifting to the wolt direction by an
amount equal to Hit as depicted in Fig. 8. When the loads are small, the results are almost the
same as those obtained by Ooat[3]. It should be noted that the initial slope is not zero.

In the ripd-plastic analyses which have been discussed hitherto, the elastic deformation is
disregarded. Now, by assuming that a plate is made of elastic material, we consider the
potential energy at large deftections as

1r =2(1:: vZ) L" (E;o+ 2VElOE,O+ E;0)21rY dy

Bt3 (II ro
+24(1- vi) Jo (1<..,2 + 2VI<..,I<, + I<B~21rY dy - Jo (pw)21rY dy
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z
Fia. 7. Simply supported shallow circular conical shell subjected to uniformly distributed circular loading.
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....plant .......ry COlllllllon

-----(0)

-4 --------(b)

2.0 3
t

-5

Fig. 8. Load-deftection relations for simply supported shallow circular conical shells with bolllldary either
(a) restrained spinst inward movement or (b) free to move inward.

where E and v are Young's modulus and Poisson's ratio, respectively. If we take the assumed
deformation field for a plate with boundary restrained against inward movement as

u = Uo<;2 - ;) 1
= (1 + v _4_2(3+ v) -2+ 1)

W Wo S+ v 1 S+ v 1

and for a plate with boundary free to move inward as

( -2 2+ v -) 32 w0
2

-21
U = Uo 1 -1 + v 'Y - (l + v)(S + v)2 a 1

(1+ v -4 2(3+ v) -2+ 1)W=Wo --1 ----1
S+v S+v

(68)

(69)

then, the energy method gives the following results for a plate with boundary restrained against
inward movement

p = 1- (2/3)6 . Ae(" +B~ 3)
3(S +v)- 3(3 + v)6'2+ (l +v)64 0 0

and for a plate with boundary free to move inward as

p - 1- (2/3)6 A (- C- h
-3(S+v)-3(3+v)6'2+(l+v)64 e Wo+ Wo}.

55 Val. 17. No. II-e

(70)

(71)
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In the above equations, A, Band C are the functions of 1', and

e = E (1.)2 b= !z..
0'0 a' a

(72)

The results for b=1.0 and II =OJ are shown in Fig. 9 together with the rigid·plastic solution.
The real behavior of a circular plate may be well approximated by the elastic curve when the
deformation is small, and by the rigid·plastic curve when the deflection is large. However. in the
case where e is large, the rigid·plastic analysis gives good approximation throughout the entire
range of deflections.

To account for the elastic deformation, Onat and Haythornthwaite[l] proposed the method
in which the deflection obtained by the elastic small deflection analysis was added to that
obtained by the rigid·plastic large deflection analysis. They showed remarkable agreement
between the predicted result and experiment for a simply supported circular plate with
boundary free to move inward. The crosses in Fig. 10 show experimental results with elastic
linear deflections subtracted, and they agree quite well with the theoretical curve by Onal and
Haythornthwaite[I]. However, the agreement does not verify the proposed procedure since
their rigid·plastic curve is not considered appropriate as discussed beforehand. As shown in
Fig. 10, the proposed curves in this paper show good agreement with the measured test results.

8
p

P,; b=1.0
7 1/=0.3

6

(a)
5 RiVid-P1o.li<

4

2

Ok::::__--'-_---:;~--'- ~-~--J

o 2 3 ~ 4
I

Fig. 9. Elastic solution of load-cleflection relations together with rigid-plastic solution for simply supported
circular plate with boundary either (a) restrained against inward movement or (b) free to move inward.

3.0r------------:7'"1

• _"lftl FIoouIto.Ro>ltl]

• TlSt IIoWIs will Elastic L_
llolIoClicn~

0.5 1.0

Fig. 10. Experimental and theoretical load-deftection relations for simply supported circular plate with
boundary free to move inward.
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S. CONCLUSIONS

The generalized yield line method has been formulated in cylindrical coordinates to analyze
large deformations of rigid-plastic circular plates under axisymmetric lateral pressure. The
procedure to derive the general equation to get the load-deflection relations is different from
that by Sawczuk[7] although the obtained equation is the same. Then, it has been applied for
simply supported circular plates under circular loading. The boundary has been assumed to be
either restrained against inward movement or free to move inward. The obtained load-deflection
relations are quite different from those of Onat and Haythornthwaite[1] and Hodge[2]. It has
been shown that, if we take appropriate deformations, the methods of Onat and
Haythornthwaite[1] and Hodge[2] give almost the same results as those of the present paper.
Finally the method to take into account the elastic deformations bas been proposed which is
different from the procedure suggested by Onat and Haythomthwaite[l]. The proposed
load-deflection relation has shown good agreement with test results.
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